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Abstract

In the two-¯uid model, the closure relations for the mass, momentum and energy interfacial transfer
terms involve the contact area between the phases per unit volume, namely the volumetric interfacial
area. Ishii suggested that the local volumetric interfacial area should obey a transport equation. The
main purpose of this paper is to derive this transport equation from geometrical considerations. No
assumption on the interface con®guration is needed so that the mathematical expression obtained for
the transport velocity is valid for any two-phase ¯ow regime. The physical signi®cance of the transport
velocity will be illustrated on some arti®cially generated bubbly ¯ows with spherical bubbles. The link
between the variables entering the transport equation and experimentally measurable quantities will be
exempli®ed. The measurement of the local volumetric interfacial area and its transport velocity can be
achieved by using four-sensor probes. As a preliminary study of real measurements, we have assessed
the performance of some existing signal processing methods proposed for four-sensor probes on some
arti®cially generated ¯ows. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Among the di�erent approaches used to model and simulate gas±liquid two-phase ¯ows with
or without phase change, the most general one is probably the two-¯uid model since it
describes each phase separately. In this model, a set of balance equations for mass, momentum
and energy is written for each phase. The two phases are coupled through interfacial transfer
terms for mass, momentum and energy which should verify the interfacial balance equations.
These interfacial transfers generally depend upon the contact area between the phases per unit
volume, namely the volumetric interfacial area. Thus, the determination of this volumetric
interfacial area is of the utmost importance to correctly predict the evolution of two-phase
¯ows by means of the two-¯uid model.
Ishii (1975) suggested that the local volumetric interfacial area ai should obey a transport

equation having the following form:

@ai

@t0
� div�aiVi� � Fai

�1�

where Vi is the transport velocity of the volumetric interfacial area and Fai
a source term

taking into account the di�erent phenomena creating or destroying interfacial area, such as
coalescence or breakup of bubbles or droplets, phase change or interfacial stretching.
The ®rst objective of this paper is to derive Eq. (1) without assuming any particular

geometrical con®guration of the interfaces, therefore, to prove that Eq. (1) can be applied
independently of the ¯ow regime. As a by-product of this derivation, the rigorous
mathematical expression of the transport velocity Vi will be found. To begin with, the previous
attempts to establish volumetric interfacial area transport equations similar to Eq. (1) by
di�erent authors will be discussed. The rigorous demonstration of Eq. (1) will then be given in
Section 3. As the results obtained in Section 3 do not depend on the two-phase ¯ow regime, we
have chosen to illustrate our theory on the bubbly ¯ow regime in Sections 4 and 5. Section 4 is
devoted to the physical signi®cance of Eq. (1), which will be shown not to be trivial, even for
the simple case of a bubbly ¯ow with spherical bubbles. Section 5 is devoted to the
measurement of the local volumetric interfacial area and its transport velocity by means of a
four-sensor probe. This type of probe has been chosen because their use is not limited to a
particular two-phase ¯ow regime. However, the accuracy of the measurement using a four-
sensor probe depends on the size of the probe. We have thus simulated the behavior of such
probes in an arti®cially generated bubbly ¯ow with spherical bubbles in order to evaluate the
e�ect of the ®nite size of the probe.

2. Previous derivations of the volumetric interfacial area transport equation

Achard (1978), Guido-Lavalle and Clausse (1991), Navarro-Valenti et al. (1991),
Kocamustafaogullari and Ishii (1995) and Millies et al. (1996) gave a theoretical foundation for
Eq. (1) by using a statistical formulation. These authors considered a dispersed ¯ow and
assumed that the particles constituting the dispersed phase (bubbles, droplets or solid particles)

C. Morel et al. / International Journal of Multiphase Flow 25 (1999) 1099±11281100



could be characterized by some geometrical properties x such as a diameter, a shape factor . . . .
The dispersed phase is then described in terms of a particle probability density function f�x,x,t�
de®ned in such a way that f�x,x,t�jdxjdV is the probable number of particles in the volume
element dV around the point x having a vector of characteristic properties between x and x�
dx at time t. The quantity jdxj stands for dx1dx2 . . . dxn so that jdxjdV �
dx1dx2dx3dx1dx2 . . . dxn is the di�erential volume element in the phase space. This particle
probability density function (pdf) must verify the Liouville-type equation (Hulburt and Katz,
1964; Tien and Lienhard, 1979):

@f

@t
� div

�
fc
ÿ
x,x,t

���Xn
j�1

@f_x j

@xj
� h

ÿ
x,x,t

� �2�

where n is the number of characteristic properties, c�x,x,t� the velocity of the center of a typical
particle, _x j�x,x,t� the time rate of change of the jth characteristic property measured along the
particle trajectory and h�x,x,t� is a source term due to the coalescence/breakup and nucleation/
collapse phenomena. In the statistical formulation, the volumetric interfacial area is de®ned as
a particular statistical moment of the particle pdf:

ai�x,t��̂
�
O
Ai

ÿ
x
�
f
ÿ
x,x,t

�jdxj �3�

where Ai�x� is the interfacial area of a typical particle and O is the space of variation of the
property vector x. The volumetric interfacial area transport equation (1) can then be obtained
by multiplying Eq. (2) by Ai�x� and integrating the resulting equation over O provided that:

Vi�̂

�
O
Ai

ÿ
x
�
c
ÿ
x,x,t

�
f
ÿ
x,x,t

�jdxj
ai

�4�

Fai
�̂
�
O

"
Ai

ÿ
x
�
h
ÿ
x,x,t

��Xn
j�1

@Ai

ÿ
x
�

@xj
_x jf
ÿ
x,x,t

�#jdxj �5�

It can be seen that the transport velocity de®ned by Eq. (4) corresponds to the center of area
velocity. This result is valid for dispersed two-phase ¯ows only and cannot be applied to other
¯ow regimes with continuous interfaces like strati®ed or annular ¯ows.
Candel and Poinsot (1990) derived a transport equation for the volumetric ¯ame area in

reacting single phase ¯ows, a quantity analogous to the volumetric interfacial area in two-
phase ¯ows. The authors de®ned the volumetric ¯ame area ai as:

ai�̂dA

dV
�6�

where dA is the elementary ¯ame area embedded in an arbitrary unspeci®ed volume element
dV. The authors then assume that dA and dV are convected by the same velocity vi and that
this velocity is prescribed over the domain swept by the moving ¯ame surface. Starting from
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the Leibniz rule for the time rate of change of a volume integral, the authors have shown that:

1

dV

DidV

Dt
� 1

dV

�
@dV

@t
� vi � rdV

�
� div vi �7�

and starting from the corresponding rule for the time rate of change of a surface integral, they
have shown that:

1

dA

DidA

Dt
� ÿnknk:rvi � div vi �8�

the right-hand side of Eq. (8) being the surface divergence of the velocity vector vi.
If the ¯ame front propagates in the normal direction at a speed SL, the velocity vi will

appear as the sum of the local ¯uid velocity vk and the ¯ame speed in the normal direction
(Candel and Poinsot, 1990):

vi � vk � SLnk �9�
Combining Eqs. (6)±(9), the authors obtained the following transport equation for ai:

@ai

@t
� div aivi � ÿ

ÿ
nknk:rvk ÿ div vk

�
ai � aiSLdiv nk � aiFs �10�

where Fs is the source term of volumetric ¯ame area per unit area. This source term comes
from two main contributions: the e�ect of the ¯uid strain rate acting in the tangent plane and
the e�ect of the ¯ame curvature.
The method used by Candel and Poinsot (1990) is not satisfactory because the volumetric

¯ame area Eq. (6) is not uniquely de®ned. Actually, it can be shown that, for a given area
element dA, the value of ai depends on the choice of the volume element dV which surrounds
dA.
Coutris (1993) tried to establish the volumetric ¯ame area transport equation by using the

mass balance equation of a material surface S(t ) moving in space. If rs represents the surface
density, this balance equation can be written as:

@rs

@t
� divs�rsvi� � 0 �11�

where vi is the velocity of a ®xed point on surface S(t ) and divs the surface divergence operator
(Aris, 1962). By assuming that the volumetric ¯ame area is de®ned as:

ai�̂rv

rs

�12�

where rv is the volumetric density of a membrane constituted by the surface S(t ) arti®cially
thickened, and considering that the velocity vi is given by Eq. (9), Eq. (11) becomes:

@ai

@t
� divs

�
ai

ÿ
vk � SLnk

��� @aiSL

@n
� aidivs

ÿ
vk � SLnk

� �13�

an equation claimed by Coutris (1993) to be another form of Eq. (10). However, although the
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volumetric ¯ame area ai is de®ned in a di�erent way, it su�ers from the same drawback as the
one de®ned by Candel and Poinsot (1990) since thickening the interface is equivalent to choose
a particular elementary volume.
Marle (1982) used the theory of distributions in order to derive the macroscopic equations

governing multiphase ¯ows in porous media. The volumetric interfacial area corresponding to
the interface S�t� between two phases or between one phase and the solid is de®ned by Marle
(1982) as a convolution product:

ai�x,t��̂�dS �m��x,t� �
�
R3

dS
ÿ
xÿ y,t

�
m�y� dy �

�
R3

dS
ÿ
y,t
�
m�xÿ y� dy �14�

where dS is a Dirac distribution with the interface S�t� as a support and m�x� is a positive
function with a compact support in R 3 given by the following relation:

m�x� �
(
C exp

h
ÿ
ÿ
r2 ÿ jxj2

�ÿ1i
if jxj<r

0 if jxjrr
�15�

the constant C being chosen in order to satisfy:�
R3

m�x� dx � 1 �16�

The function m�x� has been chosen of class C1 in order to ensure that any averaged quantity
f �m�x,t�, such as the volumetric interfacial area given by Eq. (14), for example, will be also of
class C1.
The volumetric interfacial area transport equation obtained by Marle (1982) reads:

@ai

@t
� div

�
�vi � nk�nkdS �m

� � ÿ2H�vi � nk�dS �m�
X
�vL � tL�dL �m �17�

where vi and nk are, respectively, the velocity vector and the unit normal vector de®ned on
each point of the interface and H the mean curvature of the interface. The summation in the
last term of Eq. (17) applies to the di�erent contact lines L(t ) delimiting S�t�. The quantity dL

is the Dirac distribution with support L(t ), vL and tL are, respectively, the velocity vector ®eld
of the boundary L(t ), and the unit vector tangent to the interface and normal to its boundary,
outwardly directed.
Despite the fact that Eq. (17) does not involve any hypotheses, the di�erent quantities it

contains cannot be easily connected to experimentally measurable quantities.
Drew (1990) derived a volumetric interfacial area transport equation quite similar to that of

Marle (1982). The volumetric interfacial area was de®ned by Drew (1990) as:

ai�x,t��̂h@Xk

@n
i � hnk � rXki �18�

where Xk is the characteristic function of phase `k' and h i is an ensemble averaging operator.
Note that the gradient of the characteristic function is non-zero only in the sense of
distributions. The quantity nk � rXk is a Dirac distribution with the di�erent interfaces as a
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support. The transport equation obtained by Drew (1990) reads:

@ai

@t
� div�aiVi� � ÿ �H

@ak

@t
�
�
�Hÿ �H��vi � nk�

@Xk

@n

�
�19�

where the transport velocity Vi and the mean curvature �H are de®ned by the following
relations:

Vi�̂
h�vi � nk�nk@Xk=@ni

ai

�20�

�H�̂hH@Xk=@ni
ai

�21�

and the time fraction ak is de®ned as the ensemble average of Xk. The ®rst term in the right-
hand side of Eq. (19) corresponds to the time rate of change of the volumetric interfacial area
associated to the variation of the void fraction due to phase change and/or compressibility and
dilatability of the phases. The second term in the right-hand side of Eq. (19) represents the rate
of change of interfacial area due to bubble coalescence and breakup (Drew, 1990).
Eq. (19) su�ers from the same drawbacks as Eq. (17) obtained by Marle (1982), i.e., the

di�erent quantities it contains cannot be easily connected to experimentally measurable
quantities. However, the transport terms of Eqs. (17) and (19) both involve the speed of
displacement vi � nk of the interfaces in the normal direction. The transport term we will obtain
in Section 3 will also display the same characteristic feature.
The main objectives of the present paper are the following:

1. to derive a volumetric interfacial area transport equation valid for any ¯ow con®guration
and free of any hypothesis,

2. to link the variables entering this transport equation to quantities which can be
experimentally determined,

3. to explain the physical signi®cance of the transport velocity entering the transport equation,
4. to assess the performance of some existing signal processing methods to be used with four-

sensor probes.

3. Local volumetric interfacial area transport equation

3.1. De®nitions and identities

A brief demonstration of the balance Eq. (1) is proposed in this section, a more detailed one
being given by Morel (1997). The de®nitions of the volumetric interfacial areas as given by
Delhaye (1976) are ®rst recalled.
Let us ®rst consider an arbitrary, ®xed volume V (Fig. 1) which contains some interfaces

having a total area Ai(t ). The instantaneous, global volumetric interfacial area is de®ned over
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the volume V by the following relation:

G�t��̂Ai�t�
V

�22�

We then consider a given point �x,y,z� in volume V during a time interval [T ] centered on t0.
During this time interval, a ®nite number of interfaces pass through point �x,y,z�, each
interface having at point �x,y,z� a unit normal vector nk outwardly directed from phase `k' and
a displacement velocity vi � nk, vi being the velocity of a ®xed point on the interface. The local
volumetric interfacial area is de®ned over the time interval [T ] by the following relation:

ai�x,y,z,t0��̂ 1

T

X
J

1

jvi � nkj
�23�

where the summation applies to all the interfaces J passing through �x,y,z� during [T ].
Delhaye (1976) proved the following identity, valid for any arbitrary vector ®eld Bk�x,t�

associated with phase `k':

1

T

�
�T�

1

V

�
Ai�t�

Bk � nk da dt � 1

V

�
v

1

T

X
J

Bk � nk

jvi � nkj
dv �24�

where da and dt are the area and time elements.
If the vector ®eld Bk is chosen such that Bk � nk is veri®ed on the interfaces, identity (24)

becomes:

1

T

�
�T�

G�t� dt � 1

V

�
v

ai�x,y,z,t0� dv �25�

which is a fundamental identity connecting the two volumetric interfacial areas de®ned by Eqs.
(22) and (23). For an arbitrary, ®xed surface (S ) intersecting the interfacial area Ai(t ) through
a curve C(t ), Eq. (24) results in the following equation (Delhaye and Achard, 1977):

Fig. 1. Two-phase, ®xed control volume.
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1

T

�
�T�

�
C�t�

Bk � nk

dC

nk � nkC

dt �
�
s

1

T

X
J

Bk � nk

jvi � nkj
da �26�

where nkC is the unit normal vector to the curve C(t ) located in the tangential plane to the
surface (S ) at the point considered.
De®nitions and identities Eqs. (22)±(26) will be used to derive Eq. (1). First, a balance

equation for the global volumetric interfacial area G�t� will be time-averaged over a time
interval [T ], leading to Eq. (32) hereafter. Then, the local volumetric interfacial area transport
Eq. (1) will be space-averaged over the volume V leading to Eq. (33) hereafter. The
mathematical expressions of the transport velocity Vi and of the source term Fai

will ®nally be
obtained by identifying Eqs. (32) and (33).

3.2. The global volumetric interfacial area balance equation

The time rate of change of the interfacial area Ai(t ) contained in volume V at time t is equal
to the ¯ux of interfacial area through the boundary A of volume V, plus a production term per
unit volume g�x,t�:

dAi�t�
dt
� ÿ

�
C�t�

sgn�nk � n��vi � nk�
����������������������������
1ÿ �nk � nkC�2

q dC

nk � nkC

�
�
v

g�x,t� dv �27�

where n is the unit vector normal to surface A and outwardly directed and nkC the unit vector
normal to the curve C(t ) located in the tangential plane to surface A, C(t ) being the
intersecting curve between the two surfaces A and Ai(t ). The sign function `sgn' is de®ned by:

sgn�a��̂ a

jaj �28�

If surface A is subdivided into two complementary open surfaces A1 and A2 separated by an
arbitrary plane p (Fig. 1), then the curve C(t ) is subdivided into two curves C1(t ) and C2(t )
located on the surfaces A1 and A2, respectively. Then, by splitting the ®rst term in the right-
hand side of Eq. (27) into two contributions and dividing by volume V, we obtain:

dG�t�
dt
� 1

V

�
C1�t�

sgn�nk � n1��vi � nk�
������������������������������
1ÿ �nk � nkC1 �2

q dC

nk � nkC1

� 1

V

�
C2�t�

sgn�nk � n2��vi � nk�
������������������������������
1ÿ �nk � nkC2 �2

q dC

nk � nkC2

� 1

V

�
v

g�x,t� dv
�29�

3.3. Time-averaging the global volumetric interfacial area balance equation

The balance Eq. (29) being an instantaneous one, it can be time-averaged over the time
interval [T ]:

1

T

�
�T�

dG�t�
dt

dt � G�t0 � T=2� ÿ G�t0 ÿ T=2�
T

� d

dt0

1

T

�
�T�

G�t� dt � d

dt0

1

V

�
v

ai dv �
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1

V

�
v

@ai

@t0
dv �30�

where identity (25) and the fact that V is ®xed have been used. Now, by using identity (26)

with S � A1,2 and Bk � visgn�nk � n1,2�
��������������������������������
1ÿ �nk � nkC1,2

�2
q

we obtain:

1

T

�
�T�

�
C1,2,�t�

sgn�nk � n1,2��vi � nk�
��������������������������������
1ÿ �nk � nkC1,2 �2

q dC

nk � nkC1,2

dt �

�
A1,2

1

T

X
J

sgn�nk � n1,2��vi � nk�
��������������������������������
1ÿ �nk � nkC1,2 �2

q
jvi � nkj

da �31�

By time-averaging Eq. (29) and using Eqs. (30) and (31), we obtain:

1

V

�
v

@ai

@t0
dv� 1

V

�
A1

X
J

sgn�nk � n1�sgn�vi � nk�
������������������������������
1ÿ �nk � nkC1 �2

q
T

da

� 1

V

�
A2

X
J

sgn�nk � n2�sgn�vi � nk�
������������������������������
1ÿ �nk � nkC2 �2

q
T

da � 1

V

�
v

1

T

�
�T�

g�x,t� dt dv �32�

3.4. Space averaging the local volumetric interfacial area transport equation

As the transport equation (1) proposed by Ishii (1975) is a local one, it can be space-
averaged over volume V. By using the Gauss theorem, we get:

1

V

�
v

@ai

@t0
dv� 1

V

�
A1

aiVi � n1 da� 1

V

�
A2

aiVi � n2 da � 1

V

�
v

Fai
dv �33�

The comparison of the Eqs. (32) and (33) leads to:

�
A1,2

X
J

sgn�nk � n1,2�sgn�vi � nk�
��������������������������������
1ÿ �nk � nkC1,2 �2

q
T

da �
�
A1,2

aiVi � n1,2 da

�
v

�
Fai
ÿ 1

T

�
�T�

g dt

�
dv � 0 �34�

The volume V and the surfaces A1 and A2 being arbitrary, we have:
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Vi � n �

X
J

sgn�nk � n�sgn�vi � nk�
����������������������������
1ÿ �nk � nkC�2

q
TX

J

1

Tjvi � nkj
�35a�

Fai
� 1

T

�
�T�

g dt �35b�

Therefore Eq. (1) which was proposed by Ishii (1975) is justi®ed, provided that the transport
velocity Vi and the source term Fai

are expressed by the relations Eqs. (35a) and (35b),
respectively, n de®ning an arbitrary oriented direction in space.

4. Application to bubbly ¯ows

Although the results obtained in the preceeding section do not depend on the interfacial
con®guration, i.e., on the two-phase ¯ow regime, we ®rst investigate the simple case of bubbly
¯ows with spherical bubbles to look for the physical signi®cance of Eqs. (23) and (35a) which
relate the volumetric interfacial area and its transport velocity to the speed of displacement and
orientation of the interfaces.
One characteristic feature of the motion of a surface is that only the displacement velocity

vi � nk can be uniquely de®ned. Expressions (23) and (35a) for the local volumetric interfacial
area and its transport velocity both involve the displacement velocity of the interfaces vi � nk,
that is the velocity normal to the interface. This particular feature will have some
consequences, which will be illustrated by the study of bubbly ¯ows with spherical bubbles.

4.1. A single bubble moving vertically upwards

We ®rst consider a single spherical bubble moving upwards along the z axis of a Cartesian
reference frame. The bubble radius R and the bubble velocity U are assumed to be constant.
At time t � 0, the center of the bubble is assumed to pass through the origin of the reference
frame. Let us consider a ®xed point �x,y,z� located on the trajectory of the bubble, and choose
a time interval [T ] such that the interface of the bubble is passing through the point �x,y,z� at
two times belonging to the time interval [T ]. The calculation of the local volumetric interfacial
area (23) and of its transport velocity (35a) gives:

ai�x,y� � 2R

UT
�������������������������������
R2 ÿ ÿx2 � y2

�q �36�

Vi�x,y� �

��������
0
0

U

R2

�
R2 ÿ

ÿ
x2 � y2

�� �37�
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Since the bubble radius is constant, no interfacial stretching occurs and the source term Fai
is

nil:

Fai
� 0 �38�

It is then easy to verify that the stationary form of the transport equation (1) is satis®ed.
Eqs. (36) and (37) show that the volumetric interfacial area and its transport velocity only

depend on the distance r �
����������������
x2 � y2

p
to the z axis. The pro®les ai(r ) and Viz�r� are presented in

Fig. 2 for a bubble having a radius R � 0:5 and a velocity U � 5 (in arbitrary units).
It may seem quite surprising that the vertical component of the transport velocity Viz is not

equal to the bubble velocity U everywhere, according to the intuitive idea that the interface
moves with the velocity of the bubble. In fact, this paradox can be raised by realizing that
expressions (23) and (35a) involve the speed of displacement of the interface which is de®ned
along the normal to the interface.
Let j be the angle between the unit vector nk normal to the bubble surface and the bubble

velocity vector U (Fig. 3). Eqs. (36) and (37) now read:

ai � 2

UTcos j
�39�

Fig. 2. Radial pro®les ai(r ) and Viz�r� for a spherical bubble moving vertically upwards (arbitrary units).
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Vi �
������
0
0
U cos2j

�40�

The z-component of the transport velocity Viz averaged over the sphere is then equal to U/3.
The de®nition (23) of the local volumetric interfacial area involves the speed of displacement

vi � nk of the interfaces passing through the considered point during the time interval [T ]. It can
be shown that this velocity corresponds to the scalar product of the bubble velocity U by the
unit normal vector nk. This explains the appearance of cos j at the denominator of expression
(39) for ai. The vertical component of the transport velocity Viz thus appears as the scalar
product of the vector �vi � nk�nk and the unit vector z in the z direction.
We will now consider two more complex situations. The ®rst one is a steady bubbly ¯ow in a

vertical duct with monodispersed spherical bubbles, where all bubbles move vertically upwards
with the same velocity U, their initial position at the inlet of the duct being a random variable.
The second situation is an unsteady bubbly ¯ow with monodispersed spherical bubbles where a
bubble string is progressing along the z axis of a vertical channel.

4.2. Simulation of a steady bubbly ¯ow in a vertical duct

We have numerically calculated the radial pro®les of the local volumetric interfacial area
(23) and of its transport velocity (35a) in the case of N identical spherical bubbles of radius R
moving vertically upwards with the same velocity Uz in a vertical duct having a circular cross
section of radius Rc. The initial position of each bubble in the inlet cross section of the duct
�x,y,0� is randomly imposed. The time interval [T ] is su�ciently large to have a large number N
of bubbles passing through the measuring section during this time interval. The number N
being large, one can expect that the bubble distribution in space is quite homogeneous.
Typical radial pro®les ai(r ) and Viz�r� are presented in Fig. 4 for bubbles of radius R � 0:5

rising with a velocity U � 5 in a pipe of radius Rc � 2 (in arbitrary units).
In the core of the duct the pro®les of ai and Viz are uniform. When one approaches the pipe

wall ai decreases linearly to zero and Viz ®rst increases up to a maximum located
approximately at a distance to the wall equal to 3R/2 and after decreases to zero. This wall

Fig. 3. Quantities characterizing a spherical bubble moving vertically upwards.
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e�ect can be explained by the fact that a minimum distance between the center of each bubble
and the wall, equal to the bubble radius R, is imposed when the initial position of the bubble
is randomly generated. The uniform values of ai and Viz in the core can be determined
analytically as it will be shown now.
The number of bubbles being large, the local volumetric interfacial area (23) can be

approximated by the following statistical average:

ai�x,y,z,t0� � 1

S

� �
S

p�r,y�ai,1B�r,y�r dr dy �41�

where S is the surface of the horizontal disk centered at point �x,y,z� and having a radius equal
to the bubble radius R (Fig. 5), �r,y� is the polar coordinate system describing the surface of
the disk, p�r,y� is the number of bubbles the center of which is passing through the point �r,y�
of the disk during [T ] and ai,1B�r,y� is the contribution to the local volumetric interfacial area
calculated at point �x,y,z� of each bubble the center of which is passing through the point �r,y�.
The contribution ai,1B�r,y� is given by Eq. (36).
The assumption of a homogeneous distribution of bubbles over the pipe cross section implies

the following condition on p�r,y�:

1

S

� �
S

p�r,y�r dr dy � N

�
R

Rc

�2

�42�

Fig. 4. Radial pro®les ai(r ) and Viz�r� for a stationary bubbly ¯ow in a vertical duct with random initial positions of
the bubbles (arbitrary units).
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If we consider that every point of the disk has the same probability to be crossed by the center
of a bubble (this is true only if the distance between the center of the disk and the duct wall is
equal to or greater than 2R ), then p�r,y� is constant and the relation (42) gives:

p � N

�
R

Rc

�2

�43�

Taking into account Eqs. (36) and (43), the local volumetric interfacial area given by Eq. (41)
now reads:

ai � 4N

UT

�
R

Rc

�2

�44�

Similarly, the core mean value of the vertical component of the transport velocity Viz can be
calculated by:

Viz �

� �
S

p�r,y�ai,1B�r,y�Viz,1B�r,y�r dr dy� �
S

p�r,y�ai,1B�r,y�r dr dy
�45�

where Viz,1B�r,y� is given by Eq. (37). The following simple result follows:

Viz � U

3
�46�

which is consistent with the remark made about Eq. (40).
If the calculation point �x,y,z�, namely the center of the disk S, is located at a distance to the

wall less than 2R, every point on the disk does not have the same probability to be crossed by
the center of a bubble, this probability being even zero over a part of the disk. Consequently,
expressions (44) and (46) are no longer valid. This explains the wall e�ect that can been
observed on ai and Viz (Fig. 4) for distances to the wall less than one bubble diameter.

Fig. 5. Notations used for the determination of the local volumetric interfacial area.
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However, in the ¯ow core the mean value of the transport velocity vertical component Viz of
the volumetric interfacial area for a swarm of bubbles randomly generated over the pipe cross
section and moving upwards with the same rising velocity U, is only one third of this rising
velocity.
This raises two important questions. The ®rst question concerns the physical signi®cance of

the transport velocity appearing in Eq. (1): if the transport velocity Vi is generally smaller than
the velocity of the bubbles, one could believe that the volumetric interfacial area associated to
the bubbles will arrive at a given point after the bubbles. In fact, this is a false problem due to
a misinterpretation of the transport Eq. (1). The following paragraph is devoted to the study of
this problem by simulating and analyzing the propagation of a bubble string in a duct. The
second question is the determination of a closure relation for the transport velocity Vi. It
constitutes the major issue for the introduction of a volumetric interfacial area transport
equation in the two-¯uid model. Only speci®c experiments will be capable of answering this
question.

4.3. Simulation of the rise of a bubble string

In this section, we will study the rise of a bubble string along the axis of a vertical duct (Fig.
6). The bubbles are supposed to be spherical, monodispersed, regularly spaced, and moving
with the same constant velocity U. In the case of a single bubble (Fig. 3), the transport velocity
Viz is given by Eq. (40) and is smaller than the bubble velocity U as long as the calculation
point is not located on the z axis. The axial transport velocity being smaller than the bubble
velocity, one could think that the volumetric interfacial area of the bubbles would strangely
arrive at a given point after the bubbles. The study of the rise of a bubble string will show that
this is a false problem due to a misinterpretation of the transport Eq. (1), and that this
equation, after a proper space averaging, can be reduced to a kinematic wave propagation
equation, the propagation velocity being equal to U.
Let us assume that initially the control volume does not contain any bubbles and that at

Fig. 6. Propagation of a bubble string.
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time t � 0, the leading bubble of the bubble string passes through the inlet section of the
control volume.
Fig. 7 shows the axial pro®les ai(z ) ansd Viz�z� calculated numerically at a given distance r �

0:4 from the z axis, for a bubble radius R � 0:5 and a bubble rising velocity U � 5 (arbitrary
units). Three pro®les ai(z ) taken at three di�erent times are compared in this ®gure. These
pro®les show that the propagation velocity of the volumetric interfacial area is equal to U (5
velocity units) whereas the value of Viz is smaller than U (Viz is approximately equal to 1.8 at
the distance r � 0:4). In order to verify that the result illustrated in Fig. 7 is not contradictory
with Eq. (1), we will evaluate the values of the di�erent terms in this equation.
There is a di�culty to calculate the time and space derivatives of the volumetric interfacial

area and of its transport velocity because these quantities are piecewise continuous functions as
seen in Fig. 7. Therefore, it is necessary to space-average Eq. (1) in order to ensure the
continuity of the quantities of interest. In our case, the source term Fai

is zero because the
bubbles have a constant radius and do not coalesce or breakup and the two velocity
components Vix and Viy are nil:

@ai

@t0
� @aiViz

@z
� 0 �47�

Let us introduce the following space-averaging operator:

Fig. 7. Axial pro®les of ai and Viz at a distance r � 0:4 to the axis (arbitrary units).
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�f�x,y,z0,t0��̂ 1

Dz

�z0�Dz
2

z0ÿ
Dz
2

f�x,y,z,t0� dz �48�

Commuting the space-averaging operator with the derivative operators can be achieved by
using the limiting forms of the Leibniz rule and of the Gauss theorem applied to the segment
�Dz�. If zj �j � 1, . . . ,Nd� denotes the position of the jth discontinuity inside the segment �Dz�,
Nd being the number of discontinuities situated in this space interval, the limiting forms of the
Leibniz rule and of the Gauss theorem read:

@

@z0

�
�Dz�

f dz �
�
�Dz�

@f

@z0
dz�

XNd

j�1

h
f
�
z�j
�
ÿ f
ÿ
zÿj
�i

z2
j �̂ lim

e40
�zj2e� �49�

@

@t0

�
�Dz�

f dz �
�
�Dz�

@f

@t0
dzÿU

XNd

j�1

h
f
�
z�j
�
ÿ f
ÿ
zÿj
�i

z2
j �̂ lim

e40
�zj2e� �50�

where we took into account the fact that all the discontinuities have the same velocity U.
By applying the averaging operator (48) to Eq. (47) and by using Eqs. (49) and (50), we

obtain the following segment-averaged transport equation:

@ �a i

@t0
� @

ÿ
aiViz

�
@z0

� 1

Dz

X
j

h
ai�Viz ÿU�jz�j ÿ ai�Viz ÿU�jzÿj

i
�51�

We can then de®ne the mean value of Viz weighted by ai:

~V iz�̂aiViz

ai

�52�

Eq. (51) now reads:

@ �a i

@t0
� @

ÿ
�a i

~V iz

�
@z0

� 1

Dz

X
j

h
ai�Viz ÿU�jz�j ÿ ai�Viz ÿU�jzÿj

i
�53�

The axial pro®les of the ®ltered variables �a i and ~V iz are represented in Fig. 8 for a length Dz
of the segment �Dz� containing 10 bubbles.
The numerical values of the two sides of Eq. (51) (or equivalently Eq. (53)) versus the axial

distance z are given in Fig. 9. This ®gure shows that the two sides of Eq. (51) are nearly equal,
the slight di�erences being due to the numerical errors when replacing the derivatives in the
left-hand side of Eq. (51) by ®nite di�erences. We can therefore conclude that the volumetric
interfacial area propagates with a velocity equal to the bubble velocity even if the transport
velocity of its transport equation is smaller than the bubble velocity (Fig. 7) and this result is
not contradictory with the transport Eq. (1) (Fig. 9).
Finally, we will demonstrate that, in the particular case considered here, Eq. (51) is

equivalent to a kinematic wave propagation equation, with a propagation velocity equal to the
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Fig. 9. Comparison of the two sides of Eq. (51) versus axial direction (arbitrary units).

Fig. 8. Axial pro®les of the ®ltered variables taken at time t � 4 (arbitrary units).
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bubble velocity. Eq. (51) can be rewritten as:

@ �a i

@t0
� @

ÿ
aiViz

�
@z0

�
X
j

aiViz

�
z�j
�
ÿ aiViz

ÿ
zÿj
�

Dz
ÿU

X
j

ai

�
z�j
�
ÿ ai

ÿ
zÿj
�

Dz
�54�

In the simple case considered here, the local volumetric interfacial area undergoes a jump at
each discontinuity and is constant between two consecutive discontinuities (Fig. 7). Therefore,
the sum of the jumps of ai on all the discontinuities located within the segment �Dz� is equal to
the overall variation of ai on this segment. The velocity Viz being constant on the segment �Dz�
(Fig. 7), the same conclusion applies to the product aiViz. We thus write:

X
j

ai

�
z�j
�
ÿ ai

ÿ
zÿj
�

Dz
� ai�z0 � Dz=2� ÿ ai�z0 ÿ Dz=2�

Dz
1@ �a i

@z0
�55�

X
j

aiViz

�
z�j
�
ÿ aiViz

ÿ
zÿj
�

Dz
� aiViz�z0 � Dz=2� ÿ aiViz�z0 ÿ Dz=2�

Dz
1@aiViz

@z0
�56�

Accounting for Eqs. (55) and (56), Eq. (54) gives the following kinematic wave propagation
equation:

@ �a i

@t0
�U

@ �a i

@z0
� 0 �57�

where the propagation velocity is equal to U.
This explains why the quantity ai propagates with the velocity U although Viz is smaller than

U. However, this result cannot be generalized to more complex situations where the velocity U
varies from one bubble to the other for example.

5. Application to the quali®cation of measuring techniques

This section is devoted to the measurement of the local volumetric interfacial area and its
transport velocity by using four-sensor probes. The advantage of using four-sensor probes
instead of two-sensor probes for the measurement of the volumetric interfacial area is that
four-sensor probes can be used whatever the interfacial con®guration, i.e., whatever the two-
phase ¯ow regime, as long as the interfaces have a ®nite speed of displacement.
The use of a four-sensor probe for interfacial area measurements was initiated by Kataoka

and Serizawa (Kataoka et al., 1984, 1986, 1994).
For example, Revankar and Ishii (1993), Kojasoy et al. (1998) have used a four-sensor

electrical resistivity probe to measure the local volumetric interfacial area, respectively, in a
vertical air±water cap bubbly ¯ow and in horizontal slug ¯ows.
Although, in principle, the four-sensor probe method can be applied to all two-phase ¯ow

regimes, the accuracy of the measurement strongly depends on the ratio between the
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characteristic size of the probe (the spacing distance between the sensors) and the local radius
of curvature of the interfaces. Revankar and Ishii (1993) used a four-sensor probe with sensors
spaced by a distance of 4 mm. Later Kim et al. (1998) used a modi®ed four-sensor probe with
sensors separated by 0.6 mm. Very recently, the Thermal-hydraulics and Physics Department
of the Commissariat aÁ l'Energie Atomique/Grenoble (France) has developed a four-sensor
probe with typical spacing distances equal to 0.15 mm (Garnier, 1998).
The size and shape of the four-sensor probe certainly in¯uence the interface motion.

Therefore, it is obviously better to use small and well-designed probes to reduce the in¯uence
of the probe on the interfacial movements. A discussion on this problem can be found in Kim
et al. (1998). Another problem related to the ®nite size of the probe is the possible occurrence
of missing interfaces that do not touch each of the four sensors. The impact of this missing
phenomenon on the measurements will be discussed in the following.
First, the theoretical foundation for the measurement of the local volumetric interfacial area

established by Revankar and Ishii (1993) will be brie¯y recalled. We will then extend their
theory to the measurement of the transport velocity Vi appearing in Eq. (1).
Finally, we will evaluate the uncertainty on the measurement of ai and Vi due to the ®nite

size of the probe on some numerically generated ¯ows.

5.1. The four-sensor probe method

In this section, the method proposed by Revankar and Ishii (1993) to measure the local
volumetric interfacial area ai by means of a four-sensor probe is recalled and extended to the
measurement of the transport velocity Vi.
A four-sensor probe can be considered as a set of three double-sensor probes having a

common sensor 0 (Fig. 10).
If x0, y0, z0 denote the Cartesian coordinates of the sensor 0 in a given reference frame, the

coordinates of the three other sensors 1, 2, 3 are given by the following relations:

xk � x0 � Dskcos�Zxk�
yk � y0 � Dskcos�Zyk�
zk � z0 � Dskcos�Zzk�

�k � 1,2,3� �58�

where Dsk (k � 1,2,3) represents the distance between the sensor k and the sensor 0 (Fig. 10)

Fig. 10. Scheme of a four-sensor probe.
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and (cos Zxk, cos Zyk, cos Zzk) are the direction cosines of the unit vector nsk (k � 1,2,3) in the
chosen reference frame.
Assuming that the jth interface, de®ned by the equation Fj�x,y,z,t� � 0, is passing through

the four sensors at times tj and tj � Dtkj (k � 1,2,3), we can write:

Fj�x0,y0,z0,tj� � 0 �59�

Fj

ÿ
xk,yk,zk,tj � Dtkj

� � 0 k � 1,2,3 �60�
One can mesure the three ¯ying times Dtkj of the jth interface between sensors and de®ne the
following three velocities:

vskj�̂
Dsk
Dtkj

k � 1,2,3 �61�

If the distances Dsk (k � 1,2,3) are su�ciently small in comparison to the radius of curvature
of the jth interface, this interface is locally similar to a plane, and a ®rst order Taylor
expansion of the relations (60) near the point (x0,y0,z0,tj) gives the following set of equations:

@Fj

@x
cos Zxk �

@Fj

@y
cos Zyk �

@Fj

@z
cos Zzk � ÿ

@Fj

@t

1

vskj
k � 1,2,3 �62�

Eq. (62) can then be solved for the three components of the vector (@Fj=@x=@Fj=@t;
@Fj=@y=@Fj=@t; @Fj=@z=@Fj=@t) if the probe geometry, de®ned by the nine direction cosines, and
if the three velocities vskj are known. As a result, the speed of displacement of the jth interface
can be determined and the local volumetric interfacial area as well.
If the four sensors of the probe are arranged in an orthogonal system, the local volumetric

interfacial area is obtained from the measured velocities vskj by the following relation:

ai � 1

T

X
j

8<:
 

1

vs1j

!2

�
 

1

vs2j

!2

�
 

1

vs3j

!2
9=;

1=2

�63�

The above method, due to Revankar and Ishii (1993), assumes that the radius of curvature of
an interface is much greater than the typical dimensions of the probe. When this is not the
case, the second order terms of the Taylor expansion, not taken into account in Eq. (62), can
be important. Moreover, some interfaces detected by the probe can miss one or several sensors.
As indicated in Fig. 11, the orientation of such a missing interface in bubbly ¯ow should be
close to vertical orientation and therefore, its contribution to the local volumetric interfacial
area must be substantial, as shown by the radial pro®le of ai for a single bubble (Fig. 2).
Revankar and Ishii (1993) proposed to account for such missing interfaces in cap bubbly

¯ows by imposing the following corrective value:

ai � tb

T

l

S
�64�

where S is the projected area of the probe in the ¯ow direction, l the distance between two
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downstream sensors and tb the residence time of the bubble on the detecting sensor. However,
the physical signi®cance of expression (64) should still be ®rmly substantiated.
The method proposed by Revankar and Ishii (1993) can be extended to the measurement of

the transport velocity Vi. Eq. (35a) can be rewritten as:

aiVi � n �
1

T

X
j

sgn�vi � nk�sgn�nk � n�
�����������������������������
1ÿ �nk � nkC�2

q
�65�

where n is an arbitrary direction in space.
The right-hand side of Eq. (65) involves, for each interface, the unit normal vectors nk and

nkC in addition to the interfacial displacement velocity vi � nk (Fig. 1). The unit vector normal
to the jth interface is de®ned by the relation:

nkj�̂
rFj

jrFjj �66�

This vector can be obtained from the resolution of the system of equations (62). The vector nkC
is then determined by projecting the vector nk on the plane normal to the n direction, and by
making its modulus equal to one.
For the interfaces missing one or several sensors of the four-sensor probe, no corrective

value is proposed for Vi since such missing interfaces are nearly vertical (Fig. 11) so that the
transport velocity Viz tends to zero (Fig. 2).

5.2. Simulations of the response of a four-sensor probe in bubbly ¯ow

The behavior of a four-sensor probe in an arti®cially generated bubbly ¯ow with spherical
bubbles has been numerically simulated. The objective was to evaluate the uncertainty in the
measurement of ai and Vi due to the ®nite size of the probe. This uncertainty can be

Fig. 11. Missing signal.

C. Morel et al. / International Journal of Multiphase Flow 25 (1999) 1099±11281120



determined by comparing the values of ai and Vi obtained from the probe signals with their
exact values calculated from the equations of the di�erent interfaces.
The ¯ow considered in this section is a bubbly ¯ow in a vertical duct of circular cross

section, the radius of the duct Rc being equal to 0.1 m. A number of 10,000 bubbles move
vertically upwards through the measuring section for each run, their initial positions in the
inlet cross section (x,y,0) being randomly imposed (as in Section 4.2). The bubbles are spherical,
monodispersed, and have a constant radius R � 15 mm and a constant rising velocity U � 0:2
m/s. The dimension of the probe Ds1 � Ds2 � Ds3 � Ds was varied from one run to another
one in order to investigate the in¯uence of the size ratio Ds=R on the accuracy of the
measurement.
The comparison between the simulated pro®les ai(r ) and Viz�r� obtained from the probe

signals and the exact pro®les are presented in Figs. 12 and 13 for four di�erent values of the

Fig. 12. Comparison between the simulated pro®les ai(r ) determined from probe measurements and the exact
pro®les for di�erent values of the size ratio Ds=R.

C. Morel et al. / International Journal of Multiphase Flow 25 (1999) 1099±1128 1121



ratio Ds=R. In the determination of the simulated radial pro®le of ai, the interfaces which have
missed one or several sensors of the probe have been taken into account using the corrective
value (64) proposed by Revankar and Ishii (1993). No corrective value was used for Viz as
suggested above.
Fig. 12 shows that, when the ratio Ds=R is equal to 1/100 or 1/50, the measured and exact

pro®les of the local volumetric interfacial area are very close together, the measured one being
smoother. For higher values of the ratio Ds=R, the four-sensor probe under-estimates the local
volumetric interfacial area up to 20% for a ratio Ds=R equal to 1/5.
Fig. 13 shows that the error on the measurement of Viz is smaller than the error on the

measurement of ai. Moreover, this error over-estimates the value of Viz, and does not

Fig. 13. Comparison between the simulated pro®les Viz�r� determined from probe measurements and the exact
pro®les for di�erent values of the size ratio Ds=R.
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signi®cantly increase with the size of the probe (the biggest di�erences observed between the
measured Viz and the exact one concern the run with Ds=R � 1=10).
It is not surprising that the uncertainty on the measurement of Viz does not increase with the

size of the probe as for the measurement of ai. This error comes essentially from the interfaces
that miss one or several sensors of the probe. As it was shown in the preceding section, such
missing interfaces are nearly vertical (Fig. 11), therefore, bringing a major contribution to the
volumetric interfacial area but a minor contribution to the transport velocity, as it can be seen
on a single bubble (Fig. 2).

5.3. Simulation of the response of a four-sensor probe in a polydispersed bubbly ¯ow with
spherical bubbles

In real ¯ows, the bubbles are not monodispersed and their size can vary over one order of
magnitude. When the bubbles are polydispersed, the size ratio Ds=R varies from one bubble to
the other. The smaller the bubbles, the greater the probability to miss one or several sensors of
the probe and to give erroneous value of the interfacial area, as it has been shown in the
preceding section. In real slug ¯ows, for example, the large gas plugs are generally much less
numerous than the small spherical bubbles that are continuously entrained in their wakes. In
such a situation, the large gas plugs contain the essential part of the void fraction, but the
essential part of the interfacial area comes from the much more numerous small spherical
bubbles.
A simulation was performed to investigate the capability of a four-sensor probe to measure

the local volumetric interfacial area and its transport velocity in a polydispersed bubbly ¯ow.
The bubbles were spherical, but their size, as well as their initial position, were randomly
imposed. The size of the bubbles was varied between Ds and 100Ds, giving a ratio Ds=R
varying between 1/100 and 1. The results of this simulation are presented in Fig. 14.
Fig. 14 shows a very good agreement between the exact and measured quantities for a

polydispersed bubbly ¯ow. However, this result is somewhat arti®cial because in real ¯ows, the
size distribution of the bubbles is generally not uniform as in our simulation, but is
characterized by the existence of several peaks. For example, in slug ¯ows, there are generally
two distinct peaks associated with the gas plugs and the small spherical bubbles respectively.
Another simulation (Fig. 15) was made with the bubble radius varying from 0:1Ds to 10Ds.

Almost 10% of the bubbles were smaller than the spacing distance between the sensors of the
probe Ds and 20% were smaller than 2Ds. As for the cases with monodispersed bubbles and
values of Ds not negligible in comparison to the bubble radius R, the local volumetric
interfacial area is under-estimated, unlike the transport velocity that is well reproduced by the
probe measurement. In fact, it is not surprising that the velocity is well reproduced without a
corrective value for missing interfaces, because the contributions of the di�erent bubbles are
cumulative on the volumetric interfacial area, but not on the transport velocity.
In the last simulation (Fig. 16), the bubble radius was varied from 0:1Ds to 5Ds, therefore,

almost 20% of the bubbles were smaller than Ds and 40% smaller than 2Ds. In this case, even
the transport velocity was under-estimated by the probe measurement.
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6. Conclusion

The local volumetric interfacial area transport Eq. (1) proposed by Ishii (1975) was derived
by using geometrical considerations which do not require any assumptions on the interfacial
con®guration, i.e., on the two-phase ¯ow regime. The mathematical expression of the transport
velocity appearing in Eq. (1) is given by the relation (35a).

These results were applied to a bubbly ¯ow with spherical bubbles. Several issues have been
raised, the ®rst one being the fact that the transport velocity of the interfacial area in bubbly
¯ows is generally smaller than the bubble velocity. It was explained that the local volumetric
interfacial area ai, de®ned by Eq. (23), and its transport velocity Vi, de®ned by Eq. (35a), both
involve the speed of displacement of the interfaces which is a velocity normal to the interfaces.
As a consequence it was shown that in the steady ¯ow of a swarm of spherical bubbles moving

Fig. 14. Comparison between the measured and exact pro®les ai(r ) and Viz�r� in a polydispersed bubbly ¯ow with

spherical bubbles (Ds<R<100Ds).
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upwards with the same velocity U, the transport velocity Vi is only one third of the bubble
velocity. The study of a bubble string propagation has also shown that the spatial variations of
ai propagate at the same velocity than the bubbles, although the transport velocity is less than
the bubble string velocity. It was shown that this result was not contradictory with Eq. (1) and
that this equation could be reduced to a kinematic wave propagation equation after a proper
spatial averaging, the propagation velocity being equal to the bubble velocity.
Our method can be compared to the other methods found in the literature. The transport

terms of Eq. (17) established by Marle (1982) and (19) established by Drew (1990) also involve
the speed of displacement vi � nk normal to the interfaces. The methods used by these authors,
involving the concept of distributions, is quite analogous to the method we have developed
here, even if the obtained equations are di�erent in their mathematical form. The method
based on a statistical formulation Eqs. (2)±(5), applicable to dispersed ¯ow regimes, does not
lead to a transport velocity smaller than the bubble velocity. Actually, it can be easily seen

Fig. 15. Comparison between the measured and exact pro®les ai(r ) and Viz�r� in a polydispersed bubbly ¯ow with
spherical bubbles (0:1Ds<R<10Ds).
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from Eq. (4) that the transport velocity Vi is equal to the bubble velocity, denoted in this
equation by c, as soon as this bubble velocity does not depend on the bubble considered.
However, it must be noted that the statistical method is based on a de®nition Eq. (3) that is
di�erent from the de®nition Eq. (23) of the local volumetric interfacial area used in the two-
¯uid model based on time-averaging operators. Clearly, the volumetric interfacial areas de®ned
by the Eqs. (3) and (23) are not the same quantities. The local volumetric interfacial area (23) is
the one appearing in the interfacial transfer terms of the two-¯uid model based on time-
averaging (Ishii, 1975), and this is the only one that is experimentally measurable.

Finally, the method proposed by Revankar and Ishii (1993) for the measurement of the local
volumetric interfacial area, was extended to the measurement of its transport velocity. The
four-sensor probe method is theoretically able to handle all two-phase ¯ow regimes, but the
accuracy of the measurements decreases with the size of the probe for a given interfacial

Fig. 16. Comparison between the measured and exact pro®les ai(r ) and Viz�r� in a polydispersed bubbly ¯ow with

spherical bubbles (0:1Ds<R<5Ds).
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con®guration. In order to investigate the decrease in the measurement accuracy when the probe
size is increased, we have numerically simulated the behavior of such a probe in several
arti®cially generated ¯ows. These ¯ows were bubbly ¯ows with spherical bubbles uniformly
distributed in space but other types of ¯ow could be considered. The method used here is
extremely fruitful because the values of ai and Vi obtained from probe signals can be compared
to their exact values determined from the equations of the interfaces. However, it would be
quite di�cult to reproduce the interfacial movements in more realistic two-phase ¯ows, because
real ¯ows are considerably more complex than those studied here, and in this case the
equations of the interfaces are generally unknown.
Nevertheless, the results obtained are quite illuminating and we hope that our approach will

be useful for the future experimental studies on interfacial area and its modeling by means of a
transport equation.
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